January 23, 2017

Public Lecture Series




18 September 2017

11.00 – 12.30pm


“Healthcare for tomorrow – a strategic rethinking of the healthcare ecosystem”


The global escalation in health care cost in both developed and developing countries is compromising healthcare affordability, accessibility and availability. This is particularly felt in chronic illnesses that require long term medical input; and patients in remote or rural communities. Efforts should therefore be put in developing new medical intervention to improve the efficiency of health care delivery and the accessibility of the health care without increasing the associated cost.Information technology (IT) in telehealth is a potential solution. Read More…

One of the major challenges is the current healthcare ecosystem that is disease based; from patient’s health behavior, industry’s emphasis to financial remuneration. A paradigm shift and strategic rethinking of this healthcare ecosystem is long overdue. In the rethinking process, due consideration must be given on the convergence of healthcare and technology; how this will improve the accessibility, affordability and availability of healthcare for tomorrow. The lecture will illustrate challenges of the current healthcare landscape; look at the role of ICT in healthcare for tomorrow and elaborate a new ecosystem that has been proposed in Malaysia that will engage key stakeholders.


Dr Chee Piau Wong is a paediatrician and a child neurologist. He received his undergraduate medical training in Malaysia and postgraduate training in Paediatrics and Paediatric Neurology in United Kingdom. He is the first Malaysia paediatrician to complete the UK Calman Training in Paediatrics and Paediatric Neurology.Chee Piau is keen in research and conducted a population based study on acute non traumatic encephalopathy in children both in UK and Malaysia. The cohort of children in UK remains the only population based cohort for this condition in the world. Read More…

The findings from his research have been used to support improvement in the provision of paediatric intensive care in Northern England. He also validated a coma scale for use in children below 5 years of age. The scale has been endorsed by the British Paediatric Neurology Association for use UK-wide. He established the telemedicine research cluster in Monash University Malaysia, formulating a strategy for translational research in telemedicine in Monash University Malaysia that are in line with the Malaysia Telemedicine Need. He established the Telemedicine Conference, Telemedicine Innovation Challenge and initiated the Telemedicine Development Group for Malaysia (TDG). Among his telemedicine research projects are an integrated online telemedicine ecosystem for Malaysia and patient centred electronic record (PACER), Child active physical and cognitive health evaluation system (Child Apache), Active video game based virtual rehabilitation system (Vihab) and using natural language processing in predicting dementia and childhood language disorders.

Chee Piau was the founding chairman of the Chapter of Developmental Paediatrics and Child Neurology in Malaysia; a member of the Malaysia Medical Council / Malaysian Qualification Agency Accreditation Committee for the accreditation of Medical Schools in Malaysia and leads the insight group within the CREST connective healthcare cluster. Chee Piau remains an active clinician and conducts clinic for general childhood disorders, children with neurology and neurodisability disorders with special interest in Paediatric Epilepsy, paediatric neurodisability and Community Paediatrics.


Assoc. Prof. Dr. Chee Piau Wong
Associate Professor of Paediatrics and Child Neurology
Tan Sri Jeffrey Cheah School of Medicine and Health Sciences,
Monash University, Malaysia


23 May 2017

10.00 – 11.30am


Big Data in Malaria Elimination


Malaria is one of the most important causes of morbidity and mortality in the developing world. Most of the deaths are in children infected by Plasmodium falciparum, a mosquito-borne protozoan parasite that invades red blood cells. Much progress has been made to reduce the burden of malaria. However, the remarkable adaptive capabilities of P. falciparum constantly undermine the efficacy of antimalarial drugs.Next-generation whole-genome sequencing (WGS) has made it possible to sequence large numbers of P. falciparum genomes. Through significant advances in sample processing, it has now become possible to conduct large-scale population genetics studies using WGS data from dried blood spots collected in the most basic endemic settings. Read More…

The MalariaGEN P. falciparum Community Project collaborates with dozens of clinical research groups and national malaria control programmes to maintain the world’s largest repository of malaria genetic data.
Presently, our global studies use WGS data from nearly 7,000 clinical cases from 4 continents, and this number is rapidly increasing with falling sequencing costs. This dataset has enabled a number of significant advances in P. falciparum genetic epidemiology including the identification of genetic factors associated with resistance to artemisinin and piperaquine. Genomic data is gradually becoming incorporated in surveillance, control and elimination interventions, but this is not without challenges. It will be important for all public health and research partners to understand which capacities are to be developed in the country, and which to be acquired through partnerships.

View Gallery



Dr Olivo Miotto
Senior Informatics Fellow
Mahidol-Oxford Research Unit, Bangkok;
Centre for Genomics and Global Health, Oxford University, Oxford.


18 July 2017

2.00 – 3.00pm


Large scale bioinformatics data integration and data mining of resources for improved target identification and validation in various therapeutic areas.


Open Targets is a public-private partnership made up of four global leading institutions in the fields of pharmaceuticals, bioinformatics and genomics, namely GSK, EMBL-EBI, the Wellcome Trust Sanger Institute, and Biogen. We combine large-scale genomic experiments to identify and validate the causal links between targets, pathways and diseases. We have recently developed the Target Validation platform, a web application for data integration and visualisation, which supports both target- and disease-centric workflows. Read More…

Our platform enables biomedical researchers to discover and prioritise biological targets for new therapies. We derive evidence of association between a target and a disease from multiple public domain resources, including germline and somatic genetics. An association score, which takes into account the observed frequency, the experiment confidence, and the likely strength of the effect of the target on the disease was also provided. By drawing on expertise in product and platform development including product testing, UX design and site development, we have created this comprehensive and robust data integration for access and visualisation. In addition, programmatic retrieval of data via RESTful endpoints and/or using our API clients, in R and Python. The Target Validation Platform is aimed at users from both academia and industry, whether you want to browse a target on a gene by gene (or disease by disease) basis, carry out more complex queries using the API, or download all evidence and association objects for downstream analyses.


Chuang Kee is a proven research and informatics leader using computational and informatics platforms for life science and drug discovery applications. In his role as Data Integration Manager at OpenTargets (EBI), Chuang Kee manages data providers across various different groups and leads the data integration efforts. Chuang Kee join OpenTargets from Ensembl.Most recently the Senior Technical Officer in the production team, responsible for the large scale genomics processing pipelines, production infrastructure development, data coordination among various sub-teams to ensure timely delivery of Ensembl releases consist of thousands genomes. Read More…

Before Ensembl, Chuang Kee was the Principal Scientist, VP at SDTC. He is responsible for the bioinformatics unit whose efforts were geared toward enhancing palm oil yield productivity via various cutting-edge high throughput assays. Prior to joining SDTC, Chuang Kee was the Senior Associate Scientists at Eli Lilly. He lead various cross functional, disciplines drug discovery informatics projects to support target identifications and validation in a variety of therapeutic areas. Chuang Kee has a MSc Bioinformatics from Chalmers University of Technology in Sweden.


Mr Ong Chuang Kee
Data Integration Manager
Open Targets, European Bioinformatics Institute (EMBL-EBI)